Ionic currents underlying fast action potentials in the obliquely striated muscle cells of the octopus arm.

نویسندگان

  • Dan Rokni
  • Binyamin Hochner
چکیده

The octopus arm provides a unique model for neuromuscular systems of flexible appendages. We previously reported the electrical compactness of the arm muscle cells and their rich excitable properties ranging from fast oscillations to overshooting action potentials. Here we characterize the voltage-activated ionic currents in the muscle cell membrane. We found three depolarization-activated ionic currents: 1) a high-voltage-activated L-type Ca(2+) current, which began activating at approximately -35 mV, was eliminated when Ca(2+) was substituted by Mg(2+), was blocked by nifedipine, and showed Ca(2+)-dependent inactivation. This current had very rapid activation kinetics (peaked within milliseconds) and slow inactivation kinetics (tau in the order of 50 ms). 2) A delayed rectifier K(+) current that was totally blocked by 10 mM TEA and partially blocked by 10 mM 4-aminopyridine (4AP). This current exhibited relatively slow activation kinetics (tau in the order of 15 ms) and inactivated only partially with a time constant of ~150 ms. And 3) a transient A-type K(+) current that was totally blocked by 10 mM 4AP and was partially blocked by 10 mM TEA. This current exhibited very fast activation kinetics (peaked within milliseconds) and inactivated with a time constant in the order of 60 ms. Inactivation of the A-type current was almost complete at -40 mV. No voltage-dependent Na(+) current was found in these cells. The octopus arm muscle cells generate fast (~3 ms) overshooting spikes in physiological conditions that are carried by a slowly inactivating L-type Ca(2+) current.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effects of ionic parameters on behavior of a skeletal muscle fiber model

All living cells have a membrane which separates inside the cell from it's outside. There is a potential difference between inside and outside of the cell. This potential difference will change during an action potential. It is quite common to peruse action potentials of skeletal muscle fibers with the Hodgkin-Huxley model. Since Hodgkin and Huxley summarized some controlling currents like inwa...

متن کامل

Comparison of the effect of quasitrapezoidal and rectangular pulses on bio- electrical activity, calcium spike properties and afterhyperpolarization potentials of Fl cells of Helix aspersa using intracellular recording

  While the effect of changes of stimulus waveform (quasitrapezoidal and rectangular current pulses) on nerve activation is clear, but there is no evidence on the effect of quasitrapezoidal pulses on ionic currents of cellular membrane. In the present study, the effect of depolarizing quasi-trapezoidal current pulses, in comparison with that of depolarizing rectangular current pulses, on firing...

متن کامل

Neuromuscular system of the flexible arm of the octopus: physiological characterization.

The octopus arm is an outstanding example of an efficient boneless and highly flexible appendage. We have begun characterizing the neuromuscular system of the octopus arm in both innervated muscle preparations and dissociated muscle cells. Functionally antagonistic longitudinal and transverse muscle fibers showed no differences in membrane properties and mode of innervation. The muscle cells ar...

متن کامل

Seasonal Variations of Fat and Fatty Acid Composition in Muscle Tissues of Mediterranean Octopuses

 The effects of seasons on lipid and fatty acid profiles of muscle types (mantle and arm) of Mediterranean octopuses (common octopus-Octopus vulgaris and musky octopus-Eledone moschata) were investigated. The results showed that lipid levels ranged from 0.75% to 1.60% in both muscle types of octopuses which were considered as lean. Lipid levels in mantle tissues of both octopus species w...

متن کامل

Seasonal Variations of Fat and Fatty Acid Composition in Muscle Tissues of Mediterranean Octopuses

 The effects of seasons on lipid and fatty acid profiles of muscle types (mantle and arm) of Mediterranean octopuses (common octopus-Octopus vulgaris and musky octopus-Eledone moschata) were investigated. The results showed that lipid levels ranged from 0.75% to 1.60% in both muscle types of octopuses which were considered as lean. Lipid levels in mantle tissues of both octopus species were hig...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 88 6  شماره 

صفحات  -

تاریخ انتشار 2002